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ON THE EXISTENCE AND REPRESENTATION OF EQUILIBRIUM
IN AN ECONOMY WITH GROWTH AND
NONSTATIONARY CONSUMPTION*

By RAJNISH MEHRA!

1. INTRODUCTION

The paper by Lucas (1978) “Asset Prices in an Exchange Economy” initiated a
paradigmatic change in the Theory of Equilibrium Pricing of Risky Assets. It was
followed by several papers including those by Brock (1979, 1982), Prescott and
Mehra (1980) and Donaldson and Mehra (1984) who generalize Lucas’ model to
a production setting.

In this paper, we examine a variation of Lucas’ pure exchange model. In Lucas’
model the level of consumption follows a Markov process. Observing the large
increases in per capital consumption in the past, we postulate that the growth
rate of consumption follows a Markov process, an assumption that enables us to
capture the nonstationarity in the consumption series. Our extension is particu-
larly relevant for empiricists interested in testing consumption—based asset pric-
ing models in the Lucas-Prescott research tradition.

The introduction of nonstationarity into the consumption process is a non-
trivial exercise necessitating an extension of competitive equilibrium theory,
which we discuss and develop in Section 3 below. We establish the existence and
representation of a competitive equilibrium of the Debreu variety for an impor-
tant class of economies. We show the equilibrium has a valuation system that can
be represented as a dot product.

Economies of the type we consider here have received a lot of attention,
especially in the literature on asset pricing. However, no one to our knowledge
has offered a proof of existence of equilibrium or has established a representation
of the dot product type. The important papers by Hansen and Singleton (1982,
1983) typifies the approach. Existence and representation are simply assumed,
and the authors directly invoke the necessary first order conditions for opti-
mality. Brock (1979, 1982), on the other hand, does not connect with the Debreu
approach.

Since we deal with growth and nonstationarities in the consumption process,
the analysis becomes nonstandard. In the absence of growth, one could simply
apply the theorem in Lucas (1978). The crux of the analysis is to identify a
commodity point and space with the associated topology for which the utility

* Manuscript received February 1985; revised January 1987.
!'T am especially indebted to Edward C. Prescott for his perceptive insights and his generosity in
sharing them. Financial support from the National Science Foundation is gratefully acknowledged.
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functions have the necessary continuity properties and the production sets have
nonempty interiors so that the conditions of Debreu (1954) can be verified.

This paper consists of four sections. Section 2 describes the economy. Section 3
considers the existence and optimality of equilibrium. Section 4 concludes the

paper.

2. THE ECONOMY

The economy we consider was judiciously selected so that the joint process
governing the growth rates in aggregate per capita consumption and asset prices
would be stationary and easily determined. The economy has a single repre-
sentative “stand-in” household. This unit orders its preferences over random
consumption paths by

m 5 3 puc}

where ¢, is per capita consumption, f is the subjective time discount factor, Ey{ - }
is the expectation operator conditional upon information available at time zero
(which denotes the present time) and U: R, — R is the increasing concave utility
function. To insure that the equilibrium return process is stationary, the utility
function is further restricted to be of the constant relative risk aversion class,

1-a

?) U, o) =—; 0<a< o

1 —o
The parameter a measures the curvature of the utility function. When « = 1, the
utility function is defined to be the logarithmic function, the limit of the above
function as o approaches one.

We assume that there is one productive unit producing the perishable con-
sumption good and there is one equity share that is competitively traded. Since
only one productive unit is considered, the return on this share of equity is also
the return on the market. The firm’s output is constrained to be less than or
equal to y,. It is the firm’s dividend payment in period ¢ as well.

The growth rate in y, is subject to a Markov chain; that is:

(3) Vev1 = X1
where x,,, € {1, ..., 4,} and
4 Pr{x,, = ’Ij; X, = A} = &i;-

It is also assumed that the Markov chain is ergodic. The 4, are all nonnegative
and y, > 0. The random variable y, is observed at the beginning of the period, at
which time dividend payments are made. All securities are traded ex-dividend.
We also assume that the matrix A with elements a;; = B¢;; AjT°fori,j=1,...,n
is stable; that is, lim 4™ as m— oo is zero. In the Appendix, it is shown that this is
necessary and sufficient for the expected utility to exist if the stand-in household
consumes y, every period.
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3.  EQUILIBRIUM

In order for this to be a Debreu (1954) competitive equilibrium model, it is
necessary to map our model into his structure. This requires, among other things,
a specification of a linear space, L, to serve as the commodity space. Given that
in our economy, economic activity takes place over an infinite number of periods,
the space is necessarily infinite dimensional. Our commodity space is the normed
linear space of infinite sequences of vectors with the tth vector indexed by the
event, e, = (x, ..., X,). The set of possible period ¢ events, E,, is finite having
cardinality n'. The norm for z € L is

z(e)

Vi

Il z|| = sup max
t ere E;

where y, = y,x; ... X, is the event contingent maximum output of the firm. The
element z(e,) is the quantity of the good delivered in period t conditional upon e,
occurring.

The households consumption set is

C={celL: y/2<cle) all e cE, all t},

which is stronger than the requirement that consumption be non-negative. This
helps in establishing the continuity of the preference ordering on C induced by
().

The endowment of the stand-in household is the zero element of L and the
firm’s production possibility set is

W={weL: wle)<y all eekE, al ¢}

This completes the representation of our economy in the Debreu framework.

The allocation cf(e,) = w}¥(e,) = y, is a Pareto optimum as more is preferred to
less. In the Appendix, the expected utility of plan c* is shown to exist. As plan 2¢c*
belongs to C, the element c* is not a saturation point for the stand-in household.
The appendix also establishes the continuity of the utility function.

The consumption possibility set C is convex; the expected utility functional u:
C— R is concave and continuous; the production possibility set W is convex and
has an interior point; c* is not a saturation point for the stand-in household. By
Theorem 2 of Debreu (1954, page 590), this optimum can be supported by a
valuation equilibrium subject to the conditions of the Remark (page 591). The
conditions of the Remark are satisfied for a point that exists in C having valu-
ation less than c*. The point with ¢, = y,/2 and c/(e,) = c}¥(e,)/2 is such a point.

This theorem of Debreu does not guarantee that the equilibrium valuation
function v: L— R has the dot product representation, which is required in the
subsequent analysis. The needed result is now established.?

Let I be the linear subspace of L for which z, = 0 for ¢ > n. Let n,(z) denote

2 This result could also be established by verifying Mackey continuity of preferences and then
applying a theorem of Bewley (1970, 1972) or Brown and Lewis (1981).
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the projection of z on IV, The following valuation function p, which does have a
dot product representation, will be shown to also support the optimum allo-
cation:
p(z) = lim v[=n,(2)] = Z Z ple)z (e,).
Hn=* 00 t et

If z € C implied =n,(z) € C, the result would be an application of Theorem 1 in
Prescott and Lucas (1972, page 418). Their theorem holds under the following
slightly weaker conditions. Letting ¢" denote the element with c(e,) = c(e,) for
t < nand cf(e) = y, for t > n, the Prescott-Lucas assumptions that ¢ € C implies
m,(c) € C and that ¢, ¢’ € C and u(c) > u(c’) implies u[r,(c)] > u(c’) for sufficiently
large n are modified by replacing 7,(c) by ¢". This slightly more general version of
their theorem is established by substituting p(-) + lim v(0") for p(-) wherever it
appears in their proof, where 0 denotes the zero element of L. [Note that in this
setting v(c") = v(n,(c)) + v(0"). Hence, lim v(c") = p(c) + lim v(0")]

4. CONCLUSIONS

In this paper, we model the nonstationarity of consumption series associated
with the large increases in past per capita consumption by examining a variant of
Lucas’ Asset Pricing model. We define an equilibrium and demonstrate its exis-
tence and optimality. This facilitates the development of a framework for testing
a class of consumption-based pricing models, with a view to evaluating their
predictions against the yardstick of actual observation. We pursue the empirical
implications of these models in Mehra and Prescott (1985).

Massachusetts Institute of Technology
and University of California at Santa Barbara, U.S.A.

APPENDIX

We first establish that the expected utility of the element ¢* € C with the
c¥(e) = y, exists. Let vy, i) be the expected utility for the first ¢ + 1 periods of the
plan if y, = y and x, = 4;. It satisfies the recursion

1—a

Loy -1 .

(A1) U1y 1) = 1— o + B Z (bijvt(;"jya])-
J
fort =0, 1,.... The initializing function is
(1-a) _ 1

A2 ) =
( ) UO(y: l) 1 — o

By definition, the expected utility of c* is the limit of vy, i) as t goes to infinity.
It is easily verified by mathematical induction that

P Vit —a) I_Bz+1
"9 R T L Ty
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by noting it is true for t = 0 and using (A1) to conclude that if it is true for ¢ then
it is true for ¢ + 1. The substitution of (A3) into (A1) yields

(A4) Voerr =1+ B2 A",  i=1...,n
j

The requirement for the expected utility to exist is that the difference equation
(A4) converge given y,, = 1 for all i. It will occur if and only if the n x n matrix
A = [B¢,; A ] has eigenvalues which all lie within the unit circle in the com-
plex plan or equivalently that lim 4" = 0. This is true by assumption.

The expected utility exists for all ¢ € C and is continuous because ¢ € C
constraints event contingent consumption c,(e,) to be at least half c¥(e,) and not
more than ||c|| times c}(e,). This uniformly bounds the percentage difference
between the c,(e,) insuring the expected utility of ¢ exists given the expected utility
of ¢* exists. Continuity follows because the sequence c, € L converging to c € L
requires the percentage difference between c,(e,) and c(e,) go to zero uniformly in ¢
and e,. This implies the limit of u(c,) is u(lim c,).
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